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This article provides a set of heuristics with which to tune intervals, chords and 

chord progressions within a tonal setting. The frequency of each pitch, as it relates to 

tonic, is represented in the form zyx 532  ,   Zzyx ,, . Propositions of tuning and 

their resulting heuristics are supported by historical trends in music theory, as well 

as by experimental evidence. Detailed examples, including a short chorale by J.S. 

Bach, are presented as musical scores, Csound scores and MP3 sound files. 

Overview 

Tonality can be thought of as the marriage between periodic sounds, interwoven 

at multiple levels, and neuron firing patterns within the auditory system, similarly 

interwoven. Ideally, the former directly causes the latter with optimal efficiency. 

Theoretical tuning systems restricted neither by the number of frequencies per 

octave nor by the accuracy of sound production may be systematically explored 

using digital sound synthesis techniques. Such tuning systems can target the human 

auditory system directly, taking into account the diverse interdependent physical, 

physiological and psychological factors affecting the perception of musical pitch. 

The approach of tuning by ratios cannot be discounted out of hand. Just 

intonation can duplicate equal temperament to any desired level of precision. For 

example, to increase A-440 by a semitone in equal temperament, one would 

multiply 440 Hz by 212 . To an accuracy of seven decimal places (well beyond 

discrimination thresholds), this value would be A 440 x 1.0594631 = B-flat 

466.1637640 Hz. 

To reproduce this interval in just intonation, simply select a fraction whose 

numerator X and denominator Y provide the same approximation for 212 . In this 

case, X/Y = 10,594,631/10,000,000 = 1.0594631 which, when multiplied by 440 Hz, 

will yield exactly the same B-flat with a frequency of 466.1637640 Hz. 
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Any interval from equal temperament can be reproduced in this manner. One 

cent, approximately 1.0005778, can be represented as the fraction 

10,005,778/10,000,000, and one hundredth of a cent, 1.0000058, as 

10,000,058/10,000,000. 

Just intonation can similarly approximate every interval from any system to 

arbitrary precision; thus, for all practical purposes, equal temperament, and indeed 

any tuning system, is a subset of just intonation. It is therefore not a question of 

whether just intonation, defined as a system in which all frequencies are related to 

each other as integer ratios, can provide the correct frequencies, but rather of which 

frequencies its precise fractions should produce. 

The goal of attaining theoretical perfection with twelve notes has already been 

proven impossible: 

We want to adjust 36 connections independently (even more if we specify “just” 

sevenths or tritones) when there are only twelve things being connected; in fact, 

since the starting point is arbitrary, there are only 11 degrees of freedom. In these 

terms it is clear that there is absolutely no hope of our ever devising a truly just 

scale, one in which all intervals are in tune; in mathematical terms, it is a badly over-

determined system, a non-trivial optimization problem. Since the people dealing with 

it have usually not been equipped with this viewpoint, it is no wonder that the 

problem has often been attacked intuitively rather than systematically, and that such 

a wide array of tunings and temperaments have been proposed as context-

independent ‘solutions’. 

— Donald E. Hall (1974) 

The solution to finding a system, assuming it exists, in which any piece of tonal 

music can be made in tune, must then rely on using more than twelve tones. A truly 

modern method of tuning, which can only be implemented electronically, should 

determine the number and relative frequencies of pitches according to the 



 

  4 

 

   

capabilities of the human auditory system. The rules governing such a tuning 

system must be clear and their implementation consistent. 

In order to demonstrate that tuning by ratios is practical in tonal music, two 

examples are tuned in complete detail using Csound. Please refer to the following 

section, “A Chord Progression Example”, as well as “Appendix: Heuristic Analysis 

of a Bach Chorale”, beginning on p. 22. Supplementary Csound orchestra and score 

files, along with mp3 sound files, can be found at: 

https://Bobby1956.github.io/Rule-Based-Tuning/ 

A Chord Progression Example 

The traditionally notated score in Figure 1 illustrates the familiar chord 

progression I-vi-ii-V-I. Beneath each note is a fraction representing the frequency 

relative to tonic. To obtain the frequencies in Hertz, simply multiply each such 

fraction by 65.406, the octave equivalent of C2. The rules by which to obtain the 

fractions representing relative frequencies are given in “Heuristics for Tuning 

Chords”, starting on p. 15. 

 
Figure 1. Chord Progression Example 

https://Bobby1956.github.io/Rule-Based-Tuning/chrd_prog.html 

https://bobby1956.github.io/Rule-Based-Tuning/
https://bobby1956.github.io/Rule-Based-Tuning/chrd_prog.html
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Notice that the low D in the bass of measure one, beat three, is tuned as 20/9. In 

the same measure but in the treble and on beat four, there is another D tuned as 9/1, 

which is not an octave equivalent of 20/9. Such redefined notes are known as 

mutable tones. Mutable tones do not signify a weakness in just intonation; on the 

contrary, they indicate the already proven need for more than twelve tones, even in 

a simple and common two-chord progression such as ii-V. 

Five-limit Tuning Compatible with Experimental Models 

Helmholtz on Dissonance 

Preeminent nineteenth-century scientist and physician Helmholtz described 

resonance not in terms of string lengths or tensions, but rather in physiological 

terms. According to Helmholtz, hair cells of the inner ear act as tuned resonators. 

His theory states that dissonance is caused by the beating of partials contained in 

two or more primary tones. Conversely, consonance results when two tones occur 

simultaneously without beating, as when two sine waves form the intervals of 

octaves, perfect fifths, perfect fourths, and, under certain circumstances, smaller 

intervals. According to Helmholtz: 

Combinational tones are the most general cause of beats. They are the sole cause of 

beats for simple tones which lie as much as, or more than, a minor third apart. 

— Hermann L.F. von Helmholtz (1954/1863) 

The major scale proposed by Helmholtz uses intervals that are consistent with 

the theory of 5-limit just intonation (Figure 2). Another version of this scale 

proposed earlier by Rameau (1971/1722), also consistent with 5-limit theory, differs 

only by the second scale degree. 
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Figure 2. Major scale tuned according to Helmholtz (1954/1863) 

Critical Bandwidth Theory 

A breakthrough study (Plomp and Levelt 1965) demonstrated beyond doubt that 

partials sharing a critical band, an interval of roughly a minor third, interfere with 

each other (Figure 3). An important conclusion of this study is that, in general, the 

highest two consecutive partials not sharing a critical band are the fifth and sixth. 

Calculations revealed that when one six-partial sawtooth wave is gradually 

separated in frequency from the other, the only consonant intervals within the first 

octave are 5:6, 4:5, 3:4, 2:3, and 3:5, all basic ratios of 5-limit theory (Figure 4). 

 

Figure 3. Standard consonance curve for two simple tones (Plomp and Levelt 1965) 
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Figure 4. Computed dissonance for intervals between two six-harmonic tones, 

the lower of which is 250 Hz (Plomp and Levelt 1965) 

Other Supporting Evidence for 5-limit Theory 

A wealth of additional psychoacoustical research points to the first 5-6 partials as 

the spectral region of a periodic tone most closely associated with pitch perception. 

Research on the dominance region reveals that partials 3-5 are the principal 

determinants of pitch for a harmonic complex, and easily mask their higher partial 

neighbors (Ritsma and Engel 1967). There may be little or no phase locking to weak 

components which are close in frequency to stronger ones, and such weak 

components are likely masked from the overall time pattern of nerve impulses 

(Moore 1997). 

Virtual pitch theory, based on the concept that a learning matrix of integer 

relationships is formed during the early stages of speech acquisition, asserts that 

both pitches and virtual pitches are inputs to a central processor that performs 

analysis of incoming signals (Terhardt 1974). Discrete partials are thus grouped into 

increasingly higher order perceptual units, pattern-matched against the learning 

matrix, and eventually interpreted as individual pitches. It logically follows that the 

same central processor is involved in grouping pitches into the higher order units 
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we recognize as chords and chord progressions. Terhardt proposed that the third 

through sixth harmonics are dominant in the pitch identification process. 

Harmonic Coincidence 

Harmonic coincidence refers to the percentage of harmonics of a tone that 

coincide with harmonics from another tone. For two frequencies related as integers 

p and q, p and q being mutually prime, the coinciding harmonics will be multiples 

of pq. As an example, for the interval of an octave, p would be 1 and q would be 2. 

The coinciding harmonics for a sawtooth wave would be every other harmonic for 

p, and every harmonic of q. For a perfect fifth using the sawtooth timbre, with p = 2 

and q = 3, the coinciding harmonics, having relative frequencies of {6, 12, 18, . . .}, 

would include every third harmonic of p and every other harmonic of q. 

For each interval in Table 1, the number of coinciding harmonics is given. For 

brevity, each numerator and denominator is less than 9. Intervals generally 

associated with consonance tend to have a high number of coinciding harmonics, 

especially when the intervals are relatively close. Notable consonant exceptions are 

8/1, the triple octave; 8/3, the perfect fourth plus octave; and 8/5, the minor sixth. 

Notice that other than these three exceptions, the only intervals having no 

coinciding harmonics are those containing a seven in either the numerator or 

denominator. In general and without exception, no interval whose numerator or 

denominator contains a prime factor greater than five can have a coinciding 

harmonic within the first six harmonics, the “sweet spot” for the perception of 

periodic sounds. 

A study of harmonic coincidence indicates that consonant intervals are those that 

share common lower harmonics (Vos and Vianen 1985). If harmonic coincidence 

could be proven essential for the perception of tonality, then intervals from which 

tonal chords are assembled would be limited to the form zyx 532  ,   Zzyx ,, . 
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Table 1. Coinciding harmonics for selected intervals using 6-partial sawtooth waves 

INTERVAL COINCIDING HARMONICS 

1/1 Unison 6 

2/1 Octave 3 

3/1 Perfect Fifth Plus Octave 2 

3/2 Perfect Fifth 2 

4/1 Double Octave 1 

4/3 Perfect Fourth 1 

5/1 Major Third + 2 Octaves 1 

5/2 Major Third + Octave 1 

5/3 Major Sixth 1 

5/4 Major Third 1 

6/1 Perfect Fifth + 2 Octaves 1 

6/5 Minor Third 1 

7/1 (non-standard) 0 

7/2 (non-standard) 0 

7/3 (non-standard) 0 

7/4 (non-standard) 0 

7/5 (non-standard) 0 

7/6 (non-standard) 0 

8/1 Triple Octave 0 

8/3 Perfect Fourth + Octave 0 

8/5 Minor Sixth 0 

8/7 (non-standard) 0 

Listening Experiments Involving Tonal Chord Progressions 

A study by the author examined the interplay of tuning system, timbre and 

duration. For each progression length, ranging in number from 1 - 7 chords, the 

most commonly occurring chord progression from 375 Bach chorales was 

electronically selected. Each progression was played 12 times. Variable parameters 

were tuning system (E.T., Pythagorean, Just), speed (0.5 sec. per chord, 1 sec. per 

chord), and timbre (sine wave, 8-partial sawtooth). Results indicated that equal 

temperament was favored when short durations and/or complex waveforms were 

used, while 5-limit just intonation was preferred when long durations and/or sine 

waves were employed. Equal temperament was marginally favored overall. 

Pythagorean tuning was simply not competitive with the other two tuning systems. 

Future listening experiments based upon chords and chord progressions should 

explore the effects of varying such parameters as tuning system, timbre, duration, 

amplitude, range and chord spacing, all of which affect the perception of 

consonance. Of special interest are various timbres employing the first six partials. 
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Propositions of Five Limit Tuning 

This section provides a list of general propositions upon which a series of 

heuristics, some of which are absolute and others that depend upon varying 

parameters, can be based. An illustration of an absolute heuristic is that of always 

tuning the perfect fifth as 3:2. Any close approximation will be perceived as the pure 

interval 3:2; conversely, any attempt at using the perfect fifth to fit some other 

relationship will sound too dissonant to be included in tonal harmony. The 

following list of propositions can be used to ensure that the principles of just 

intonation are maintained for most simple chord progressions. 

Intervals 

1. Within a single set of simultaneously occurring frequencies, an octave 

equivalent always bears a relationship of 1:2n . 

This is taken as a given. All traditional Western tuning systems, including just 

intonation, Pythagorean tuning, and equal temperament, steadfastly obey this rule. 

2. Any tone in any chord can be transposed by any number of octaves, and the 

tuning, except for octave transposition, of the chord’s individual notes will 

remain unchanged. 

There is no proof, but common practice shows that tunings are stable upon the 

octave transposition of individual tones. Any chord can be inverted to produce any 

other inversion, and the resulting tuning for this inversion, except for octave 

transposition of the affected notes, will remain unchanged. 

If one sound forms a perfect consonance with the fundamental sound, it will also 
form a perfect consonance with its octave; if another forms an imperfect consonance 
or a dissonance on the one hand, it will also form an imperfect consonance or a 
dissonance on the other; if another has to ascend or descend on the one hand, it will 
ascend or descend on the other, finally, everything that harmonizes on the one hand 
will also harmonize on the other. 

— Jean-Philippe Rameau (1971/1722) 
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3. Within a single chord, the perfect fifth (or its octave equivalent) is always 

tuned in the proportion of 3:2 (or its octave equivalent). 

The perfect fifth can be derived from the third partial of the harmonic series. It is 

further the basis of all ancient Greek tuning systems, including Pythagorean tuning 

and its descendent, equal temperament. Rameau pointed out that nearly every 

chord in tonal music contains a perfect fifth (or its inverse, the perfect fourth, or one 

of their octave equivalents), and believed it to have only one tuning. 

4. Within a single chord, the perfect fourth (or its octave equivalent) is always 

tuned in the proportion of 4:3 (or its octave equivalent). 

The perfect fourth, as with its inversion the perfect fifth, will sound mistuned 

using any other ratio. It is such a basic tonal cornerstone that there should not be 

any exceptions within a single chord to this simple rule. 

5. Within a single chord, the major third (or its octave equivalent) is always 

tuned in the proportion of 5:4 (or its octave equivalent). 

As with the perfect fifth (3:2) and the perfect fourth (4:3), the major third, no 

matter how it is tuned, will be perceived as a single interval, in this case, 5:4. 

Mersenne, Rameau, Helmholtz and a host of other notable tuning specialists list 

only one tuning for this interval. By combining this proposition with propositions 3 

and 4, many chords can quickly either be tuned or shown to be contradictory. 

Chords 

6. Any valid chord can be transformed into another valid chord by dividing 1 by 

each of its relative frequencies. 

For example, the minor triad is 1 divided by the major triad. The ii7 variety of 

the half-diminished seventh chord (135:160:192:240) is 1 divided by the dominant 

seventh chord. 
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7. Any major triad must be tuned so that its relative frequencies are octave 

equivalents of 1:3:5. 

This is the fundamental tuning for the simplest and most common chord type. 

The components of the major triad are found in the first five partials of the harmonic 

series, with relative frequencies of 1, 2, 3, 4 and 5. When octave equivalents are 

removed from these first five partials, the values 1, 3 and 5 are left. (Closed root 

position would be 4:5:6.) For example, in the Table of Intervals for the Major Triad 

(Table 2), the first C in the left hand column, C1, is multiplied by 5:4 to obtain an E 

5:4. This ratio corresponds to the interval of a just major third. 

 C (1) E (5:4) G (3:2) 

C (1) 1 5:4 3:2 

E (5:4) 4:5 1 6:5 

G (3:2) 2:3 5:6 1 

Table 2. Table of intervals for the major triad 

8. Any minor triad must be tuned so that its relative frequencies are octave 

equivalents of 1:2, 1:3 and 1:5. 

The minor triad is regarded as a mirror image of the major triad. A detailed 

comparison between the intervals found in the major triad (Table 2) and the 

corresponding intervals found in the minor triad (Table 3) reveals that perfect fifths, 

major thirds and minor thirds are identical. The minor triad can thus be tuned as 

octave equivalents of 1, 1:3, 1:5, or equivalently, 15:5:3, or in closed root position, 

10:12:15. If root C of a minor triad is taken as 1, then E-flat = 6:5 and G = 3:2. 

 C (1) E-flat (6:5) G (3:2) 

C (1) 1 6:5 3:2 

E-flat (6:5) 5:6 1 5:4 

G (3:2) 2:3 4:5 1 

Table 3. Table of intervals for the minor triad 
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9. Any dominant seventh chord must be tuned so that the frequency for each of 

its notes is related to its root as an octave equivalent of 2, 3, 5 and 1:9. (In 

closed root position, this will be 36:45:54:64.) 

This tuning is not a familiar one in the literature. It is completely avoided by 

Rameau, for instance, who favors the proportions 20:25:30:36. There is much to say 

for the seventh of a dominant seventh chord being related to its root as an octave 

equivalent of 1:9 (and to its tonic as an octave equivalent of 1:3). In the key of C, for 

example, there is no reason to change the tuning for the common tone F in extremely 

familiar progressions such as ii6 – V7 – I and IV – V7 – I. Rameau’s tuning for F 

relates to tonic C as an octave equivalent of 27:5, instead of the vastly more direct 

octave equivalent of 1:3. (Rameau’s F, 27:5, is 21.5 cents sharper than the proposed 

common tone F, 16:3.) Had Rameau extended his own principle of the pre-eminent 

perfect fifth (and its inversion the perfect fourth) not only to individual chords but 

also to chord progressions, he would have found this much better tuning for the 

dominant seventh. More generally, he would have discovered that simple ratios, 

such as 1:3, serve as intermediaries to a greater number of chords and chord 

progressions than do their more complex counterparts, such as 27:5. 

10. Any major seventh chord must be tuned so that the frequencies for its notes 

are related to their root as octave equivalents of 2, 3, 5 and 15. 

This is in keeping with Rameau’s practice of maintaining tunings of triads 

embedded within seventh chords. Contained within the major seventh chord is a 

major triad, to which is added the major seventh above the root. This major seventh 

acts as both the fifth of the major triad’s major third, and the major third of the major 

triad’s fifth. For a C major seventh chord, this tuning preserves the tunings of the 

embedded C major and E minor triads. 
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11. The function of chord x may be applied to another chord y by simply 

multiplying the relative frequencies of chord x by the fundamental frequency 

of chord y. 

For example, if the frequency values for chord x, the dominant triad (12:15:18 in 

relation to tonic), are applied to chord y, in this case, tonic, then the values remain 

the same (12:15:18). If they are applied to a chord y in the case of a dominant, then 

each frequency of chord x is multiplied by the root of the dominant chord, an octave 

equivalent of 3:1, resulting in the values for the tonal function V/V, 36:45:54. The 

dominant of V/V, which is V/V/V, would similarly be tuned by multiplying the 

values for x, (12:15:18), by the root of y, 36, resulting in octave equivalents of 

108:135:162. 

12. The supertonic minor ii chord in a major key is tuned as octave equivalents of 

10:9, 4:3 and 5:3. 

For example, take tonic C as 1. We can assume the F, which is a cornerstone, 

being a fifth below tonic, to be related to C as 2:3. If a supertonic D ii chord, which 

serves the same pre-dominant function as IV, were to use the same subdominant 

tunings for both F and A, then the tuning for the ii chord would be D 10:9, F 4:3, and 

A 5:3. 

13. The major IV chord is always tuned in relation to its local tonic as octave 

equivalents of 4:3, 5:3 and 2. 

This tuning for major subdominant is rather self-evident, as by proposition 4 the 

root is known to be 4:3, and by proposition 7, the fixed tuning for the major triad is 

also known. 

14. The dominant of a dominant of tonic (V/V/I) is tuned as octave equivalents of 

9:8, 45:32 and 27:16. 

In other words, the dominant of C 1 is G 3:2; the dominant of G 3:2, in turn, is 3:2 

x 3:2 = D 9:4; the fifth of this secondary dominant D chord is 3:2 x 3:2 x 3:2 = 27:16. 
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Therefore, the tuning for this secondary dominant in relation to tonic C would be D 

9:8, F# 45:32 and A 27:16. 

15. The minor seventh chord is always tuned in the proportions 10:12:15:18. 

This is in agreement with Rameau’s axiom that any perfect fifth must have the 

relationship of 3:2, as is the case for the intervals 10:15 and 12:18. Additionally, the 

tuning for the minor triad 10:12:15 contained within the minor seventh maintains 

proposition 8. Similarly, the tuning for major triad 12:15:18, also found within the 

minor seventh chord, maintains proposition 7. 

16. The major seventh chord is always tuned as relative frequencies of 8:10:12:15. 

This tuning is again in agreement with Rameau’s rule of tuning all perfect fifths 

in the ratio of 3:2. As with the minor seventh, the tunings of embedded major and 

minor triads within the larger chord are maintained. 

Heuristics for Tuning Chords 

Although the following heuristics will actually account for the majority of chords 

encountered within a clearly defined key area, they are only the beginning to a 

much broader picture of tonality. Chord progressions should be identified at a 

higher level than when simply analyzing the current sonority (Taube 1999). If a 

progression is stripped of its passing tones, for instance, and compared to another 

that never had them, the two could still be shown in many cases to be the same. 

The following heuristics were based upon “Propositions of Five Limit Tuning”, 

p. 10. Frequency values are based on tonic being an octave equivalent of 1. For 

detailed implementation, please refer to “Appendix: Heuristic Analysis of a Bach 

Chorale” on p. 22. 

1. Tonic (I) major triad? If yes, 

a. The frequency of the root will be an octave equivalent of 2. 

b. The frequency of the third will be an octave equivalent of 5. 

c. The frequency of the fifth will be an octave equivalent of 3. 
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2. Tonic (i) minor triad? If yes, 

a. The frequency of the root will be an octave equivalent of 2. 

b. The frequency of the third will be an octave equivalent of 3/5. 

c. The frequency of the fifth will be an octave equivalent of 3. 

3. Tonic major (I7) chord? If yes, 

a. The frequency of the root will be an octave equivalent of 2. 

b. The frequency of the third will be an octave equivalent of 5. 

c. The frequency of the fifth will be an octave equivalent of 3. 

d. The frequency of the seventh will be an octave equivalent of 15. 

4. Tonic minor (i7) chord? If yes, 

a. The frequency of the root will be an octave equivalent of 2. 

b. The frequency of the third will be an octave equivalent of 3/5. 

c. The frequency of the fifth will be an octave equivalent of 3. 

d. The frequency of the seventh will be an octave equivalent of 9/5. 

5. Supertonic (ii) minor triad? If yes, 

a. The frequency of the root will be an octave equivalent of 5/9. 

b. The frequency of the third will be an octave equivalent of 2/3. 

c. The frequency of the fifth will be an octave equivalent of 5/3. 

6. Supertonic ii7 minor seventh chord? If yes, 

a. The frequency of the root will be an octave equivalent of 5/9. 

b. The frequency of the third will be an octave equivalent of 2/3. 

c. The frequency of the fifth will be an octave equivalent of 5/3. 

d. The frequency of the seventh will be an octave equivalent of 2. 

7. Supertonic half-diminished ii7 chord? If yes, 

a. The frequency of the root will be an octave equivalent of 9/2. 

b. The frequency of the third will be an octave equivalent of 2/3. 
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c. The frequency of the fifth will be an octave equivalent of 2/5. 

d. The frequency of the seventh will be an octave equivalent of 2. 

8. Mediant (III/i) major triad? If yes, 

a. The frequency of the root will be an octave equivalent of 3/5. 

b. The frequency of the third will be an octave equivalent of 3. 

c. The frequency of the fifth will be an octave equivalent of 9/5. 

9. Mediant (iii/I) minor triad? If yes, 

a. The frequency of the root will be an octave equivalent of 5. 

b. The frequency of the third will be an octave equivalent of 3. 

c. The frequency of the fifth will be an octave equivalent of 15. 

10. Mediant (iii7/I) minor seventh chord? If yes, 

a. The frequency of the root will be an octave equivalent of 5. 

b. The frequency of the third will be an octave equivalent of 3. 

c. The frequency of the fifth will be an octave equivalent of 15. 

d. The frequency of the seventh will be an octave equivalent of 9. 

11. Subdominant (IV) major triad? If yes, 

a. The frequency of the root will be an octave equivalent of 2/3 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

b. The frequency of the third will be an octave equivalent of 5/3 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

c. The frequency of the fifth will be an octave equivalent of 2 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

12. IV7 major seventh chord? If yes, 

a. The frequency of the root will be an octave equivalent of 2/3 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

b. The frequency of the third will be an octave equivalent of 5/3 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 
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c. The frequency of the fifth will be an octave equivalent of 2 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

d. The frequency of the seventh will be an octave equivalent of 5 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

13. Subdominant iv minor triad? If yes, 

a. The frequency of the root will be an octave equivalent of 2/3 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

b. The frequency of the third will be an octave equivalent of 2/5 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

c. The frequency of the fifth will be an octave equivalent of 2 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

14. iv7 minor seventh chord? If yes, 

a. The frequency of the root will be an octave equivalent of 2/3 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

b. The frequency of the third will be an octave equivalent of 2/5 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

c. The frequency of the fifth will be an octave equivalent of 2 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

d. The frequency of the seventh will be an octave equivalent of 3/5 multiplied by the 

frequency of the root of the chord to which it is a subdominant. 

15. Dominant (V) triad? If yes, 

a. The frequency of the root will be an octave equivalent of 3 multiplied by the 

frequency of the root of the chord to which it is a dominant. 

b. The frequency of the third will be an octave equivalent of 15 multiplied by the 

frequency of the root of the chord to which it is a dominant. 

c. The frequency of the fifth will be an octave equivalent of 9 multiplied by the 

frequency of the root of the chord to which it is a dominant. 
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16. Dominant seventh (V7) chord? If yes, 

a. The frequency of the root will be an octave equivalent of 3 multiplied by the 

frequency of the root of the chord to which it is a dominant. 

b. The frequency of the third will be an octave equivalent of 15 multiplied by the 

frequency of the root of the chord to which it is a dominant. 

c. The frequency of the fifth will be an octave equivalent of 9 multiplied by the 

frequency of the root of the chord to which it is a dominant. 

d. The frequency of the seventh will be an octave equivalent of 2/3 multiplied by the 

frequency of the root of the chord to which it is a dominant. 

17. Submediant (VI/i) major triad? If yes, 

a. The frequency of the root will be an octave equivalent of 2/5 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

b. The frequency of the third will be an octave equivalent of 2/1 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

c. The frequency of the fifth will be an octave equivalent of 3/5 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

18. Submediant (vi/I) minor triad? If yes, 

a. The frequency of the root will be an octave equivalent of 5/3 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

b. The frequency of the third will be an octave equivalent of 2 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

c. The frequency of the fifth will be an octave equivalent of 5 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

19. Submediant (vi7) minor seventh chord? If yes, 

a. The frequency of the root will be an octave equivalent of 5/3 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

b. The frequency of the third will be an octave equivalent of 2 multiplied by the 

frequency of the root of the chord to which it is a submediant. 
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c. The frequency of the fifth will be an octave equivalent of 5 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

d. The frequency of the seventh will be an octave equivalent of 3 multiplied by the 

frequency of the root of the chord to which it is a submediant. 

20. Diminished leading viio triad? If yes, 

a. The frequency of the root will be an octave equivalent of 15 multiplied by the 

frequency of the root of the chord to which it is a leading viio. 

b. The frequency of the third will be an octave equivalent of 9 multiplied by the 

frequency of the root of the chord to which it is a leading viio. 

c. The frequency of the fifth will be an octave equivalent of 2/3 multiplied by the 

frequency of the root of the chord to which it is a leading viio. 

21. Half-diminished vii7 chord? If yes, 

a. CONTRADICTION. Root of ii and fifth of V create embedded syntonic comma. 

22. For any octave equivalent of any perfect fifth within a single sonority, the lower tone will be 

related to the upper as an octave equivalent of 2:3. 

23. For any octave equivalent for any perfect fourth within a single sonority, the frequency of the 

lower tone will be related to the frequency of the upper tone as 3:4. 

24. For any octave equivalent of any major third within a single sonority, the lower tone will be 

related to the upper one as an octave equivalent of 4:5. 

25. For any octave equivalent of a minor third serving as the third and fifth of a major triad, the 

third and fifth will be tuned, relative to each other, as octave equivalents of 5 and 3. 

26. For any octave equivalent of a minor third serving as the root and third of a minor triad, the 

root and third will be tuned, relative to each other, as octave equivalents of 5 and 3. 

27. For any octave equivalent of a minor third serving as the fifth and seventh of a dominant 

seventh chord, the fifth and seventh will be tuned, relative to each other, as octave 

equivalents of 27 and 32. 

28. For any octave equivalent of any minor second within a single sonority, the lower tone will 

be related to the upper as an octave equivalent of 15:16. 

29. For any octave equivalent of any major seventh within a single sonority, the lower tone will 

be related to the upper as an octave equivalent of 8:15. 
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Concluding Remarks 

Clearly, the assertion that ratios are at the heart of traditional Western tuning 

systems is an irrefutable one. Music theorists should strive to produce, through 

rigorous listening experiments, the optimal tunings, expressed as precise ratios, for 

tonal chords and progressions. 

Automating the process of tuning for entire pieces of tonal music is not at all 

straightforward. Pitch relationships can quickly become quite complex, resulting in 

myriad mutable tones. Tonal contradictions are common, especially in chromatic 

passages. Such contradictions do not constitute an indictment of just intonation, but 

rather indicate that passages containing such contradictions are not constructed 

within a strict theoretical framework. 

The true value of just intonation is not that it can optimize the tunings for entire 

historical pieces of music, although it can more than occasionally do just that; rather, 

it is a framework, based upon the cause and effect relationships of periodic sounds 

upon the auditory system, within which to construct new pieces of music. Such 

rigorously constructed pieces could range in style from traditional classical music to 

modes of composition that have not been discovered. By carefully mapping and 

taking into account the limitations of the human auditory system, we can 

systematically explore the vast, uncharted regions of tonality. 
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Appendix: Heuristic Analysis of a Bach Chorale 

This section is provided to demonstrate that entire pieces of music can be tuned 

according to precise rules of 5-limit just intonation, as given in “Heuristics for 

Tuning Chords”, starting on p. 15. Detailed tunings are given for every vertical 

sonority contained in the Bach chorale, “Meine Seele erhebet den Herr” 

(Riemenschneider #130). 

An MP3 sound file for this chorale, as well as the Csound orchestra and score 

files from which it was produced, is available at: 

https://Bobby1956.github.io/Rule-Based-Tuning/bach1.html 

Explanation of Tables 

The following representation of a Bach chorale was initially created using 

intermediate output from the CONVERT program, one of three modules used by the 

author to catalogue chord progressions for 375 Bach Chorales. The CONVERT 

module is used to convert Csound scores into collections of discrete sonorities. Each 

line beginning with the letter ‘i’ is a Csound event representing a discrete sonority, 

or chord “snapshot”, in which no voices enters, exits, repeats or changes pitch. The 

format for each event is as follows: 

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 

Instrument 
number 

Starting 
time 

Duration Note and 
octave 
(as given 
by The 
Acoustical 
Society of 
America) 

Numerator of 
relative 
frequency 

Denominator of 
relative 
frequency  

Heuristic 
(See 
“Heuristics 
for Tuning 
Chords” on 
p. 15) and 
comments. 

 
Riemenschneider #130 
“Meine Seele erhebet den Herr” 
Key: E Minor 
1/1 = E2 (E2 = 82.407 cps) 
Measure 1 Beat 1 Chord Type: i 

i1 0 2 B4 6 1 2.c 

i2 0 2 E4 4 1 2.a 

i3 0 2 G3 12 5 2.b 

i4 0 2 E3 2 1 2.a 

https://bobby1956.github.io/Rule-Based-Tuning/bach1.html
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Measure 1 Beat 3 Chord Type: V6/III 

i1 2 2 D5 36 5 15.a 

i2 2 2 D4 18 5 15.a 

i3 2 2 A3 27 10 15.c 

i4 2 2 F#3 9 4 15.b 

Measure 2 Beat 1 Chord Type: III 

i1 4 1 B4 6 1 8.b 

i2 4 1 D4 18 5 8.c 

i3 4 1 B3 3 1 8.b 

i4 4 1 G3 12 5 8.a 

Measure 2 Beat 2 Chord Type: V4/3 

i1 5 1 B4 6 1 16.a 

i2 5 1 D#4 15 4 16.b 

i3 5 1 A3 8 3 16.d 

i4 5 1 F#3 9 4 16.c 

Measure 2 Beat 3 Chord Type: i 

i1 6 1 B4 6 1 2.c 

i2 6 1 E4 4 1 2.a 

i3 6 1 G3 12 5 2.b 

i4 6 1 E3 2 1 2.a 

Measure 2 Beat 4 Chord Type: V6 

i1 7 1 B4 6 1 15.a 

i2 7 1 F#4 9 2 15.c 

i3 7 1 F#3 9 4 15.c 

I4 7 1 D#3 15 8 15.b 

Measure 3 Beat 1 Chord Type: VI6 

i1 8 1 C5 32 5 17.a 

i2 8 1 E4 4 1 17.b 

i3 8 1 G3 12 5 17.c 

i4 8 1 E3 2 1 17.b 

Measure 3 Beat 2 Chord Type: V6/5/III 

i1 9 1 C5 32 5 16.d 

i2 9 1 D4 18 5 16.a 

i3 9 1 A3 27 10 16.c 

i4 9 1 F#3 9 4 16.b 

Measure 3 Beat 3 Chord Type: III (+2) 

i1 10 1 B4 6 1 8.b 

i2 10 1 D4 18 5 8.c 

i3 10 1 A3 27 10 23(D->A) 

i4 10 1 G3 12 5 8.a 

Measure 3 Beat 4 Chord Type: i7 

i1 11 1 B4 6 1 4.c 

i2 11 1 D4 18 5 4.d 

i3 11 1 G3 12 5 4.b 

i4 11 1 E3 2 1 4.a 

Measure 4 Beat 1 Chord Type: iv6/5 

i1 12 1 A4 16 3 14.a 

i2 12 1 E4 4 1 14.c 

i3 12 1 G3 12 5 14.d 

i4 12 1 C3 8 5 14.b 

Measure 4 Beat 2 Chord Type: iv7 (-3) 

i1 13 1 A4 16 3 14.a 

i2 13 1 E4 4 1 14.c 

i3 13 1 G3 12 5 14.d 

i4 13 1 A2 4 3 14.a 

Measure 4 Beat 3 Chord Type: V/III (microtonal change in soprano) 

i1 14 2 A4 27 5 15.c 

i2 14 2 D4 18 5 15.a 

i3 14 2 F#3 9 4 15.b 

I4 14 2 D3 9 5 15.a 
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Measure 5 Beat 1 Chord Type: III 

i1 16 4 G4 24 5 8.a 

i2 16 4 D4 18 5 8.c 

i3 16 4 B3 3 1 8.b 

i4 16 4 G2 6 5 8.a 

Measure 6 Beat 1 Chord Type: III 

i1 20 2 B4 6 1 8.b 

i2 20 2 D4 18 5 8.c 

i3 20 2 G3 12 5 8.a 

i4 20 2 G3 12 5 8.a 

Measure 6 Beat 3 Chord Type: III6 

i1 22 2 D5 36 5 8.c 

i2 22 2 D4 18 5 8.c 

i3 22 2 G3 12 5 8.a 

i4 22 2 B2 3 2 8.b 

Measure 7 Beat 1 Chord Type: V/III 

i1 24 8 A4 27 5 15.c 

i2 24 8 D4 18 5 15.a 

i3 24 8 F#3 9 4 15.b 

i4 24 8 D3 9 5 15.a 

Measure 9 Beat 1 Chord Type: V/III 

i1 32 8 A4 27 5 15.c 

i2 32 8 D4 18 5 15.a 

i3 32 8 F#3 9 4 15.b 

i4 32 8 D3 9 5 15.a 

Measure 11 Beat 1 Chord Type: iv6 

i1 40 2 E4 4 1 13.c 

i2 40 2 E4 4 1 13.c 

i3 40 2 A3 8 3 13.a 

i4 40 2 C3 8 5 13.b 

Measure 12 Beat 1 Chord Type: i6/4 

i1 42 1 G4 24 5 2.b 

i2 42 1 E4 4 1 2.a 

i3 42 1 B3 3 1 2.c 

i4 42 1 B2 3 2 2.c 

Measure 12 Beat 2 Chord Type: i6/4 (+4, 4 in bass) 

i1 43 1 G4 24 5 2.b 

i2 43 1 E4 4 1 2.a 

i3 43 1 B3 3 1 2.c 

i4 43 1 A2 4 3 22(E->A) 

Measure 12 Beat 3 Chord Type: V 

i1 44 1 F#4 9 2 15.c 

i2 44 1 D#4 15 4 15.b 

i3 44 1 B3 3 1 15.a 

i4 44 1 B2 3 2 15.a 

Measure 12 Beat 4 Chord Type: V7 

i1 45 1 F#4 9 2 16.c 

i2 45 1 D#4 15 4 16.b 

i3 45 1 A3 8 3 16.d 

i4 45 1 B2 3 2 16.a 

Measure 13 Beat 1 Chord Type: I 

i1 46 4 E4 4 1 2.a 

i2 46 4 B3 3 1 2.c 

i3 46 4 G3 12 5 2.b 

i4 46 4 E2 1 1 2.a 
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